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Grapevine (Vitis vinifera ssp. vinifera L.) and grapes have been extensively studied due to their

numerous nutritional benefits and health affecting activities. In this study, metabolite fingerprinting of

crude leaf extracts, based on 1H nuclear magnetic resonance (NMR) spectroscopy and multivariate

data analyses, has been used for the metabolic characterization of six different grapevine cultivars

including downy and powdery mildew resistant ‘Regent’ and susceptible ‘Lemberger’ among others.

Several two-dimensional (2D)-NMR techniques were also employed leading to the identification of a

number of different types of compounds. Principal component analysis (PCA), hierarchical cluster

analysis (HCA), and partial least-squares-discriminant analysis (PLS-DA) of the processed 1H NMR

data revealed clear differences among the cultivars. Metabolites responsible for the discrimination in

different grapevine cultivars belong to major classes, that is, organic acids, amino acids, carbo-

hydrates, phenylpropanoids and flavonoids. A differentiation of the cultivars based on their

resistance to downy mildew infection was also achieved, and metabolites associated with this trait,

namely, quercetin-3-O-glucoside and a trans-feruloyl derivative, were identified. On the basis of

these results, the distribution of different plant metabolites among the different grapevine cultivars is

presented.
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INTRODUCTION

Grapevines (Vitis sp.) are one of the most important fruit
species worldwide due to the use of their fruit in the production
of wine. Grapes are also popular as fresh table grapes or dried
as currants and raisins. The Vitaceae family consists of almost
1000 species, and among them Vitis vinifera ssp. vinifera is
currently the most cultivated around the world (1). Grapevine
and its products are also very well-known as a source of
bioactive compounds (2), such as vitamin E, flavonoids,
stilbenoids, and procyanidins (also known as condensed tan-
nins or oligomeric proanthocyanidins) (3). The medicinal and
nutritional value of grapes has been proclaimed for years. This
claim has now been shown to be supported by the identifica-
tion of phytochemicals isolated from them that exhibit a vast
range of different activities such as antioxidant (4), anti-
inflammatory/antiulcer (5), anticancer/antimutagenic (6), anti-
obesity (7), apart from preventing cardiovascular diseases (8)
and dermal disorders (9). Due to these vast uses and widespread
cultivation,Vitis sp. has an enormous economical importance, as a
result of which all factors that affect its yield and quality as a crop

are being intensely researched. Among these factors, their resis-
tance to abiotic andbiotic stress hasbeen the subject of a great deal
of studies (10, 11).

In their natural environment, plants are challenged by a
number of potentially virulent microorganisms. The factors
determining the resistance of plants against pathogens belong
to some constitutive (structural barriers, phytoanticipins) and
inducible defense mechanisms that include localized cell death,
synthesis of phytoalexins and pathogenesis-related proteins (12).
Successful breeding programs of grape plants with increased
resistance traits toward downy mildew should necessarily be
based on a good understanding of the innate resistance mechan-
isms of cultivars against pathogenic fungi. In grapevine research,
leaves and berries are the most targeted tissues for the pathology
related studies, though leaves present the advantage of having a
greater exposure to and thus interacting more with the pathogens
as compared to berries, which are season dependent and not
available throughout the year.

The term “metabolome” has been used to describe the ob-
servable chemical profile or fingerprint of the metabolites present
in whole tissues. Chemical analysis techniques applied to meta-
bolite profiling should be unbiased, rapid, reproducible, and
stable over time, while requiring only simple sample preparation.
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Manyplatforms are beingused for thehigh throughput analysis of
plant metabolites, but vary according to their sensitivity (13). A
technique that potentially meets all the above requirements is
nuclearmagnetic resonance spectroscopy (NMR).NMRhas been
widely used as a fingerprinting tool with multivariate or pattern
recognition techniques such as the well-known principal compo-
nents analysis (PCA) (14). Recently, the combination of NMR
and PCA has been applied to the metabolic profiling of various
types of samples (15-19). This technique has proved to be a very
powerful tool for the characterization of different species (20, 21)
and cultivars (22). However, literature concerning metabolomic
studies of the grapevine and its products using NMR is scarce.
Recently, themethod, coupled with a transcriptional analysis, has
been applied for the profiling of two grape cultivars with different
resistance capabilities against pathogenic fungi (23).

In this study, we identified the major metabolites contributing
to the discrimination between six different grapevine cultivars
using NMR spectroscopy and multivariate data analysis. Addi-
tionally, the metabolites which discriminate the cultivars on the
basis of their capacity to resist downy mildew infection were also
analyzed and their relative quantities were also determined.

MATERIALS AND METHODS

Plant Material and Extraction. Leaves from six cultivars of grape-
vine grown in the greenhouse of Julius Kuehn Institute were used in this
experiment (Table 1). Samples consisting of different leaves from the same
plant of each cultivar were homogenized and analyzed in four replicates.
The resistance of the grapevine cultivars toward Plasmopara viticola was
measured using the nine-step classification of Organisation Internationale
de la Vigne et du Vin (OIV, International Wine and Vine Organisation,
http://www.oiv.int) (24). A sample of 50 mg of freeze-dried plant material
was transferred to a 2mLEppendorf tube towhich 1.5mLofmethanol-d4:
D2O (KH2PO4 buffer, pH 6.0) (1:1) containing 0.05% TMSP (trimethyl
silyl propionic acid sodium salt, w/v) was added.Themixturewas vortexed
at room temperature for 1 min, ultrasonicated for 20 min, and centrifuged
at 13,000 rpm at room temperature for 5 min. An aliquot of 800 μL of the
supernatant was transferred to a 5 mm NMR tube.

NMR Measurements. 1H NMR and 2D J-resolved spectra were
recorded at 25 �C on a 500MHz Bruker DMX-500 spectrometer (Bruker,
Karlsruhe, Germany) operating at a proton NMR frequency of 500.13
MHz. MeOH-d4 was used as the internal lock. Each 1H NMR spectrum
consisted of 128 scans requiring 10 min and 26 s acquisition time with
the following parameters: 0.16 Hz/point, pulse width (PW)=30�, and
relaxation delay (RD)= 1.5 s. A presaturation sequence was used to
suppress the residualH2O signal with lowpower selective irradiation at the
H2O frequency during the recycle delay. FIDs were Fourier transformed
with LB=0.3Hz. The resulting spectraweremanually phased and baseline
corrected, and calibrated to TSP at 0.0 ppm, using XWIN NMR (version
3.5, Bruker). 2D J-resolved NMR spectra were acquired using 8 scans per
128 increments for F1 and 8 k for F2using spectralwidths of 5000Hz inF2
(chemical shift axis) and 66Hz inF1 (spin-spin coupling constant axis). A
1.5 s relaxation delay was employed, giving a total acquisition time of 56
min. Data sets were zero-filled to 512 points in F1, and both dimensions
were multiplied by sine-bell functions (SSB=0) prior to double complex
FT. J-Resolved spectra tilted by 45�were symmetrized about F1, and then
calibrated, using XWIN NMR (version 3.5, Bruker). 1H-1H correlated
spectroscopy (COSY) and heteronuclear multiple bonds coherence
(HMBC) spectra were recorded on a 600MHz Bruker DMX-600 spectro-
meter (Bruker). The COSY spectra were acquired with 1.0 s relaxation

Table 1. Variety Names, Their Codes, and Characteristics, Used in This
Experiment

sample no. working code variety name leaf OIV 452 characteristics

1 RG1 ‘Regent’ 8a resistant

2 RG2 Gf. Ga. 47-42 6a resistant

3 RG3 ‘Villard blanc’ 8a resistant

4 RG4 ‘Boerner’ 8a resistant

5 SG5 ‘Lemberger’ b susceptible

6 SG6 V3125 b susceptible

aAverage data over a period of 12 years (from JKI-Institute for Grapevine
Breeding, personal communication R. Eibach). b Variety based on V. vinifera which
is susceptible against Plasmopara viticola.

Table 2. 1H NMR Chemical Shifts (δ) and Coupling Constants (Hz) of Grapevine Metabolites Identified by References and Using 1D and 2D NMR Spectra
(CD3OD-KH2PO4 in D2O, pH 6.0)

compounds chemical shifts (δ) and coupling constants (Hz)

methionine 2.14 (s), 3.79 (t, J = 6.0)

proline 2.35 (m), 3.37 (m)

valine 1.01 (d, J = 7.0), 1.06 (d, J = 7.0), 2.28 (m)

leucine 0.98 (d, J = 7.5), 0.96 (d, J = 7.5)

threonine 1.32 (d, J = 7.0), 3.51 (d, J = 12.0), 4.27 (m)

alanine 1.48 (d, J = 7.4), 3.73 (q, J = 7.4)

glutamine 2.14 (m), 2.41 (td, J = 16.2, 7.5)

glutamic acid 2.13 (m), 2.42 (m), 3.71 (dd, J = 7.0, 1.9)

inositol 4.01 (t, J = 2.8)

sucrose 4.16 (d, J = 8.1), 5.39 (d, J = 3.9)

R-glucose 5.17 (d, J = 3.8)

β-glucose 4.58 (d, J = 7.9)

rhamnosyl moiety 1.10 (d, J = 6.1)

adenine 8.19 (s), 8.22 (s)

fumaric acid 6.60 (s)

tartaric acid (free) 4.80 (s)

gallic acid 7.04 (s)

succinic acid 2.53 (s)

ascorbic acid 4.52 (d, J = 2.0)

R-linolenic acid 0.95 (t, J = 7.5)

acetic acid 1.94 (s)

caffeoyl tartaric acid methyl ester 6.40 (d, J = 16.0), 6.86 (d, J = 8.0), 7.06 (dd, J = 8.0, 2.0), 7.12 (d, J = 2.0), 7.60 (d, J = 16.0), 5.46 (d, J = 2.6), 3.71 (s)

shikimic acid 2.18 (dt, J = 18.1, 1.7), 2.69 (dt, J = 18, 5), 3.70 (dd, J = 10, 4), 4.00 (m), 4.32 (t, J = 4.5), 6.56 (dt, J = 4.0, 1.7 Hz)

1-O-ethyl-β-glucoside 1.19 (t, J = 7.0)

myricetin 6.30 (d, J = 2.0), 6.52 (d, J = 2.0), 7.3 (s)

quercetin-3-O-glucoside 6.32 (d, J = 2.0), 6.53 (d, J = 2.0), 6.97 (d, J = 8.5), 7.56 (dd, J = 8.0, 2.0), 7.77 (d, J = 2.0), 5.30 (d, J = 7.6)

cis-feruloyl derivative 5.97 (d, J = 13.0), 6.84 (d, J = 8.8), 6.94 (d, J = 13.0), 7.13 (dd, J = 8.4, 2.0), 7.83 (d, J = 2.0)

trans-feruloyl derivative 6.47 (d, J = 16.0), 6.87 (d, J = 8.4), 7.06 (dd, J = 8.4, 2.3), 7.26 (d, J = 2.0), 7.65 (d, J = 16.0)
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delay, 6361 Hz spectral width in both dimensions. Window function for
COSY spectra was sine-bell (SSB=0). The HSQC spectra were obtained
with 1.0 s relaxation delay, 6361 Hz spectral width in F2 and 27,164 Hz in
F1. Qsine (SSB=2.0) was used for the window function of the HSQC.
The HMBC spectra were recorded with the same parameters as the
HSQC spectra except for 30,183 Hz of spectral width in F2. The opti-
mized coupling constants for HSQC and HMBC were 145 and 8 Hz,
respectively.

Data Analysis. The 1H NMR spectra were automatically reduced to
ASCII files. Spectral intensities were scaled to total intensity and reduced
to integrated regions of equal width (0.04 ppm) corresponding to the
region of δ 0.4-10.0. The regions of δ 4.75-4.9 and δ 3.28-3.34 were
excluded from the analysis because of the residual signal of D2O and
CD3OD, respectively. Bucketing was performed by AMIX software
(Bruker) with scaling on total intensity. Principal component analysis
(PCA) and partial least-squares-discriminant analysis (PLS-DA) with
scaling based on Pareto and Unit variance method, respectively, were
performed. Hierarchical cluster analysis (HCA) was also done using
Ward’s minimum variance method. All these analyses were performed
with the SIMCA-P software (v. 12.0, Umetrics, Umeå, Sweden). The t-test
for the 1H NMR signals was performed by MultiExperiment Viewer
(v. 4.0) (25).

RESULTS AND DISCUSSION

The establishment of a database of metabolites under well-
defined conditions, aimed at increasing the knowledge on the
biological variability of a set of samples, is considered to be the
key step of anymetabolic study. A substantial part of this process
is the identification of metabolites of different types, using
appropriate methods. Several analytical tools are generally used
in metabolomics, but MS and NMR based studies are the most
widely accepted. Though not highly sensitive, 1H NMR is
increasingly chosen now because of the simple sample prepara-
tion required and its possibility of detecting verydissimilar groups
of metabolites in fairly short periods of time. Both 1D and 2D
NMR techniques allow the identification of different classes of
compounds including amino acids, carbohydrates, organic acids,

and phenolic compounds thus facilitating the recognition of a
wide-ranging metabolome.

Although the use of NMR in metabolomic studies has many
advantages, the overlapping of the signals in NMR spectra
represents a major difficulty in the identification of each meta-
bolite. The problem is usually overcome by obtaining 2D 1H-1H
J-resolved NMR spectra to provide additional information of
each signal. The use of J-resolved spectra together with other
correlation 2D-NMRspectra such asCOSY,HSQC, andHMBC
significantly increased the number of identifiedmetabolites in this
study. Moreover, results were confirmed by comparison with
NMR spectra of the corresponding reference compounds. This
therefore afforded an evaluation of the variation in the content of
these compounds throughout the six different cultivars analyzed
by NMR (Table 1), reflecting the metabolome of each sample.

This study allowed the identification of a number of different
metabolites in the leaves of different grapevine cultivars using 1H
NMR and 2D J-resolved spectra together with 1H-1H COSY,
and HMBC spectra. These metabolites included amino acids,
organic acids, carbohydrates, flavonoids, and phenylpropano-
ids (Table 2, Figure 1). The 1H NMR spectra can be divided into
three distinct regions. The area between δ 0.8-4.0 corresponds to

Figure 1. 1H NMR spectra of two different varieties of Vitis species
showing phenolic (A) and amino acid (B) regions. The resistant cultivar
(in red) shows higher phenolic and amino acid contents than susceptible
cultivar (in blue).

Figure 2. Two dimensional 1H-1H J-resolved (A) and COSY (B) spectra
of grapevine leaf extracts in the region of δ 8.0-5.7. In 1H-1H J-resolved
spectrum (A) the following signals are observed. 1, H-80: cis-feruloyl
derivative. 2, H-8: quercetin-3-O-glucoside. 3, H-80: caffeic acid. 4, H-80:
trans-feruloyl derivative. 5, H-6: quercetin glucoside. 6, H-50: caffeic acid. 7,
H-3: trans-feruloyl derivative. 8, H-50: quercetin glucoside. 9, H-60: caffeic
acid. 10, H-60: cis-feruloyl derivative. 11, H-60: quercetin glucoside. 12, H-7:
caffeic acid. 13, H-20: quercetin glucoside. In COSY spectrum (B) the
correlations of H-70 (δ 7.65) and H-80 (δ 6.47) of trans-feruloyl derivative,
and H-50 (δ 6.97) and H-60 (δ 7.56), and H-6 (δ 6.53) and H-8 (δ 6.32) of
quercetin-3-O-glucoside are observed.
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amino acids and organic acids. The high signal intensity in this
region helped elucidate the signals by comparison with reference
spectra. This region showed signals ofmethionine, proline, valine,
threonine, leucine, alanine, glutamine, glutamic acid, R-linolenic
acid, acetic acid and succinic acid. The region δ 4.0-5.5 is
considered to be the carbohydrate region, and in this case the
signals of the anomeric protons of β-glucose at δ 4.58 (d, J=
7.9 Hz), R-glucose at δ 5.17 (d, J=3.8 Hz), and sucrose at δ 5.39
(d, J=3.9 Hz) were detected.

In the aromatic region, the low signal intensity and lack of
reference compound spectra were the main obstacles for com-
pound identification. Signal overlapping also caused difficulties,
but this problem was overcome by employing 2D NMR techni-
ques. The aromatic region showed the presence ofmajor doublets
(16.0 Hz) in the range of δ 6.4-6.5 and also in the region of δ
7.6-7.7, which are typical signals of H-80 and H-70 of phenyl-
propanoids, respectively (Figure 2A). The COSY spectra also
confirmed the correlation between H-80 and H-70 of phenylpro-
panoids (Figure 2B), with the coupling with carbonyl carbon at
δ 171 in the HMBC spectra. A trans-phenylpropanoid and its cis
form were elucidated by two-dimensional NMR, i.e., trans-
feruloyl derivative at δ 6.47 (d, J=16.0 Hz), δ 6.87 (d, J=8.4
Hz), δ 7.06 (dd, J=8.4, 2.3Hz),δ 7.26 (d, J=2.0Hz), δ 7.65 (d, J=
16.0 Hz) and cis-feruloyl derivative at δ 5.97 (d, J=13.0 Hz), δ
6.84 (d, J=8.8 Hz), δ 6.94 (d, J=13.0 Hz), δ 7.13 (dd, J=8.4, 2.0
Hz), δ 7.83 (d, J=2.0 Hz). However, the cis forms of phenyl-
propanoids are considered as to be artifacts of their trans forms
possibly produced during sample extraction or storage (26).
Additionally, a compound formed between tartaric acid and a

feruloyl moiety, some form of feruloyl tartaric acid was detected,
but the very low signal intensity hindered the complete assign-
ments for this compound.

Another phenylpropanoid was identified using 1D and 2D
NMR spectra. Signals at δ 7.60 (d, J=2.0 Hz), δ 7.12 (d, J=2.0
Hz), δ 7.06 (dd, J=8.0, 2.0 Hz), δ 6.86 (d, J=8.0 Hz), and δ 6.40
(d, J=16.0Hz) in 1HNMRare associatedwith a caffeoylmoiety.
In this particular caffeoyl moiety, correlation between signals of
H-9 at δ 7.60 and H-10 at δ 6.40 was observed in the COSY
spectrum. The COSY spectrum also showed the correlation of
signals at δ 7.12 with δ 6.80 and δ 7.06 for H-6, H-4, and H-3,
respectively. The attachment of tartaric acid to the caffeoyl
moiety was confirmed by a downfield shift of the typical tartaric
acid signal from δ 4.80 to δ 5.34 due to its bonding to the
carboxylic function of caffeic acid, whichwas also correlatedwith
the signal at δ 168.4 in HMBC spectrum. A -OCH3 signal at δ
3.71 also correlated with the tartaric acid signal at δ 5.34, which
implies the attachment of a methyl group to the tartaric acid.
Based on these assignments the compound was identified as
caffeoyl tartaric acid methyl ester.

Compounds such as fumaric acid at δ 6.60 (s), tartaric acid at δ
4.80 (s), and shikimic acid at δ 6.56 (dt, J=4.0, 1.7 Hz), δ 4.32 (t,
J=4.5 Hz), δ 4.00 (m), δ 3.70 (dd, J=10.0, 4.0 Hz), δ 2.69 (dt,
J=18.0, 5.0 Hz), δ 2.18 (dt, J=18.1, 1.7 Hz) were also recognized
in the phenolic region.Different protons of shikimic acid, i.e.,H-4
(δ 6.56) with H-3 (δ 4.32) and H-3 with H-2 (δ 3.70), were
coupled. The signals at δ 2.69 and δ 2.18 were correlated, in the
COSYspectrum, not onlywith eachother but alsowith a signal at
δ 4.00 (H-1) of shikimic acid.

Figure 3. Score plot of PCA (A), dendrogram of HCA using Ward’s minimum variance method (B), score plot of PLS-DA (C), loading plot of PLS-DA (D),
based on whole range of 1H NMR signals (δ 0.3-10.0). Score plot (A) shows the compounds responsible for the separation of six grapevine cultivars. In HCA
clustering (B) samples are clustered on the basis of similarity, and the sample with * is an outlier. PLS-DA (C) shows resistant (red) and susceptible (blue)
classes are separated. The loading plot of PLS-DA (D) shows the signals of compounds responsible for the separation of resistant and susceptible classes. 1:
1H NMR signals of quercetin-3-O-glucoside including δ 5.30 (d, J = 7.6), δ 6.32 (d, J = 2.0), δ 6.53 (d, J = 2.0), δ 6.97 (d, J = 8.5), δ 7.56 (dd, J = 8.0, 2.0), δ
7.77 (d, J = 2.0). 2: 1H NMR signals of trans-feruloyl derivative δ 6.47 (d, J = 16.0), δ 6.87 (d, J = 8.4), δ 7.06 (dd, J = 8.4, 2.3), δ 7.26 (d, J = 2.0), δ 7.65 (d,
J = 16.0).
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A flavanoid, quercetin-3-O-glucoside, with signals at δ 7.77 (d,
J=2.0 Hz), δ 7.56 (dd, J=8.0, 2.0 Hz), δ 6.97 (d, J=8.5 Hz), δ
6.53 (d, J=2.0Hz), δ 6.32 (d, J=2.0Hz) was also identified in the
aromatic region. As shown in Figure 2B, the signal at δ 6.53 of
H-6 (d, J=2.0Hz) was correlated in the COSY spectrumwith the
signal at δ 6.32 ofH-8 (d, J=2.0Hz) and a signal at δ 6.97 ofH-50

(d, J=8.8 Hz) with one at δ 7.56 of H-60 (dd, J=8.0, 2.0 Hz). All
of these assignments were done by comparing the spectra with
previous reports (18, 20) and 1D and 2D NMR spectra of more
than 500 common plant metabolites in our in-house library.

Principal component analysis (PCA) is an unsupervised, un-
biased, and clustering method used to reduce the dimensionality
of multivariate data. The principal components (PCs) can be
exhibited in a graphical form as a “score plot”. This plot is useful
for the identification of any groupings in the data set and is also
used to highlight outliers that may be due to errors in sample
preparation or instrumentation parameters. Coefficients by
which the original variables must be multiplied to obtain the
PCs are called “loadings” (27). Thus for NMR data, “loading
plots” can be used to detect the spectral areas responsible for the
separation in the data.

The first part of this study consisted of the application of PCA
in order to observe metabolic characters of the six grapevine
cultivars. In the PCA score plot, all six cultivars were separated
from each other by component 1 and 2 (Figure 3A). The SG5,
SG6, and RG1 cultivars showed positive PC2 values, but they
differed in their PC1 values, being positive and negative, respec-
tively. Cultivars like RG1, RG2, and RG4 showed one outlier
each. The three resistant cultivars (RG2,RG3, andRG4) showed
negativePC2 values anddiffered in their PC1values asRG3and 4
showed positive PC1 values while RG2 had negative PC1 values.

The separation observed in PCA can be explained in terms of
the identified compounds, using the loading plots for PC1 and
PC2. Signals of caffeic acid and fructose were found to be
discriminating for the variety SG6, while SG5 showed higher
signals for linolenic acid and adenine. Quercetin-3-O-glucoside is
proved discriminating for the RG3 variety. Three varieties, RG1,
RG2 and RG4, were grouped closer, indicating that they might
possibly share theirmetabolic profile.Metabolites responsible for
their separation were identified as amino acids such as alanine
and proline, along with succinic acid and inositol. It is interesting
that although many compounds were identified in the phenolic
region, only few turned out to be responsible for the discrimina-
tion of these grapevine varieties.

Similar to PCA, hierarchical cluster analysis (HCA) is an
unsupervised method. In HCA, based on sample similarity or
distance, progressive pairwise grouping of samples occurred.
Several distance measures, like Euclidean distance, Manhattan
distance, or correlation, can be used in HCA, but the results of
different measures will be accordingly different. The HCA results
can be seen as a dendrogram in which branch lengths reflect the
differences among the groups and thus provide an easy visualiza-
tion of the similarities of samples (14). Ward’s method uses an
analysis of variance approach to evaluate the distance between
clusters. In general, this method is regarded as very efficient
because it tends to create equally sized small clusters (28). The
results of the dendogram of HCA of the spectral data of the
cultivars (Figure 3B) are quite similar to those obtained with
PCA. Three resistant varieties, RG1, RG2 and RG4, were
clustered together showing relative similarities and also that they
share their metabolic profile. The remaining resistant variety,
RG3, was relatively distant from both the susceptible as well as
the other resistant varieties. This may be due to the high levels of
quercetin-3-O-glucoside, as observed by the loading plot of PCA.
As expected, the two susceptible varieties also show relative

similarities and were grouped together. The heights of the clusters
are proportional to the distances (differences) between the
clusters. That is, when the vertical lines are tall the clusters are
far apart (different), andwhen they are short the clusters are close
together (similar).

Both PCA score plot and HCA dendogram showed some
outliers (Figures 3A and 3B). A possible reason for the outliers in
themultivariate data analyses is the production of artifacts due to
sample storage; also the extraction solvents may have caused the
production of such artifacts during extraction (29). Another very
important reason is the age of the plant sample as the young and
old leaves of the same plant can be different in their metabolic
profile (30).

The next step in the metabolomic study consisted of applying
partial least-squares-discriminant analysis (PLS-DA) which, un-
like the unbiased system used for PCA, was performed on
preinput information. The most important information obtained

Figure 4. Relative quantification of compounds based on the mean peak
area of the signals associated with that compound. Chemical shifts (δ)
used for the relative quantification for the compounds are acetic acid at
1.94; adenine at 8.10; fructose at δ 4.12; glucose at δ 5.17; inositol at δ
3.20; ascorbic acid atδ 4.52; fumaric acid atδ 6.60; succinic acid atδ 2.53;
caffeic acid at δ 7.12; shikimic acid at δ 2.20; quercetin-3-O-glucoside at δ
6.32; trans-feruloyl derivative at δ 7.26. The graph shows the p value after
t-test between resistant and susceptible groups.



9604 J. Agric. Food Chem., Vol. 57, No. 20, 2009 Ali et al.

fromPLS-DA is the correlation between two data sets, and in this
case, the 1HNMR signals and their classification as resistant and
susceptible cultivars were investigated. The PLS-DAwas applied
by classifying the varieties into two groups. The first group was
for the resistant varieties RG1, RG2, RG3, and RG4, and the
second group was for the susceptible varieties, SG5 and SG6.

The PLS-DA completely separated both the resistant and
susceptible groups by component 1 (Figure 3C). The metabolites
responsible for that separation were identified as acetic acid,
inositol, fumaric acid, and succinic acid for the resistant group.
The metabolites adenine, fructose, glucose, ascorbic acid, caffeic
acid, and shikimic acid were responsible for the separation of the
susceptible varieties. In the case of resistant varieties, signals of
two phenolic compounds, quercetin-3-O-glucoside and a trans-
feruloyl derivative, were also found responsible for the separation
as shown by the column plot (Figure 3D).

The entire data set was submitted to the t-test for the con-
firmation and relative quantification of the signals responsible for
separation in PLS-DA. The t-test confirmed that those metabo-
lites discriminating the group of resistant and susceptible cultivars
were indeed statistically significant (p<0.05). Figure 4 shows the
relative quantity of these compounds in all six varieties. These
quantities were measured on the basis of the mean peak areas of
the characteristic signals of these compounds.

In plants primary metabolites such as amino acids, nucleotides
and carbohydrates are involved in their survival due to the crucial
role they play not only in growth, reproduction and energy
generation but also in the resistance against pathogens (31),
insects (32), and herbivores (33). Several primary metabolites
were identified in this study includingmethionine, proline, valine,
threonine, alanine, glutamine, glutamic acid, adenine, glucose,
sucrose, and fructose. As discussed earlier, many of these primary

metabolites are responsible for the metabolic discrimination of
grapevine cultivars.

Plants have a unique property known as genomic plasticity
which can be defined as their ability to diversify the defense
response against diverse abiotic and biotic stresses. Since plants
are sessile, the major strategy employed to combat these stresses,
including water deprivation, salinity, nutritional deficiency, in-
tense insolation, adverse climatic conditions, pollutants, patho-
gens, insects, and phytophags, is the production of phyto-
chemicals generally known as phytoalexins (12). These important
phytochemicals are mainly secondary metabolites since they are
not directly involved in basic processes of plants such as growth,
development, and reproduction but rather function in plant
ecological networks (34).

The majority of the phenolic compounds in plants are pro-
duced by the phenylpropanoid pathway, and these compounds
intensely affect plant growth and development alongwith playing
various important roles in many aspects of plant physiology.
Examples of these biological functions are the formation of the
cell wall polymer lignin from the phenylpropanoid precur-
sors (35), anthocyanins as floral pigments that attract pollina-
tors (36), resistance against microbes (37), and flavor and scent
compounds derived from phenylpropanoids (38). Moreover
valuable bioplastic materials can be made from phenylpropa-
noids (39). In the present study, many phenylpropanoids such as
cis- and trans-feruloyl derivatives, together with quercetin-3-O-
glucoside, were identified. As mentioned earlier, these com-
pounds influenced the clustering of different grapevine varieties
in the multivariate data analyses.

1H NMR spectroscopy has proved to be an important tool for
unbiased metabolite fingerprinting of grapevines. Among several
multivariate data analyses, principal component analysis (PCA),

Figure 5. Biosynthetic pathways of the compounds identified in this experiment. Compounds in italicswith underline showhigher level in resistant varieties, but
compounds in bold are higher in susceptible varieties.
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hierarchical cluster analysis (HCA), and partial least-squares-
discriminant analysis (PLS-DA) exposed genuine differences
between cultivars while the loading plots afforded clues on the
nature of this differentiation. Comparison of the spectra of
analyzed varieties to a library of NMR spectra of standards run
under identical conditions allowed the identification of com-
pounds responsible for the differences which were observed in
both the carbohydrate and the aliphatic regions, including sugars,
organic acids and amino acids. In view of these results, it can be
easily concluded that resistant varieties exhibit a higher produc-
tion of many compounds (Figure 5), among them quercetin-3-O-
glucoside and a trans-feruloyl derivative whichmay contribute to
the resistance of these varieties toward downymildew. This work
shows how 1H NMR analysis can be used for the rapid determi-
nation and differential characterization of plant samples based on
their metabolic composition. The technique applied here is highly
reproducible and covers a wide range of the metabolome. An
approach based on hyphenation of the less sensitive NMR with
more sensitive methods, such as GC- or LC-MS, for identifica-
tionof differences inminor compounds seems tobe a rationalway
forward to initiate the screening of plant samples. In this respect
we predict many uses of thementionedNMR technique, from the
large-scale analysis of natural variations to the identification of
mutants and transgenic plants.
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